博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 551 字,大约阅读时间需要 1 分钟。

问题

若矩阵A满足 A + A T = I A+A^{\rm{T}}=I A+AT=I,则A可逆。

证明一

反证法。假设A不可逆,则

∃ x 0 ≠ 0 \exists{x_0}\ne0 x0=0,使得 A x 0 = 0 A{x_0}=0 Ax0=0,则
x 0 A T = ( A x 0 ) T = 0 T {x_0}{A^{\rm{T}}} = {(A{x_0})^{\rm{T}}} = {0^{\rm{T}}} x0AT=(Ax0)T=0T

∴ 0 ≠ x 0 T x 0 = x 0 T ( A + A T ) x 0 = x 0 T A x 0 + x 0 T A T x 0 = x 0 T 0 + 0 T x 0 = 0 \therefore 0 \ne x_0^{\rm{T}}{x_0} = x_0^{\rm{T}}(A + {A^{\rm{T}}}){x_0} = x_0^{\rm{T}}A{x_0} + x_0^{\rm{T}}{A^{\rm{T}}}{x_0} = x_0^{\rm{T}}0 + {0^{\rm{T}}}{x_0} = 0 0=x0Tx0=x0T(A+AT)x0=x0TAx0+x0TATx0=x0T0+0Tx0=0

矛盾,所以A可逆。

证明二

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
MySQL:索引失效场景总结
查看>>
Mysql:避免重复的插入数据方法汇总
查看>>
MyS中的IF
查看>>
M_Map工具箱简介及地理图形绘制
查看>>
m_Orchestrate learning system---二十二、html代码如何变的容易
查看>>
M×N 形状 numpy.ndarray 的滑动窗口
查看>>
m个苹果放入n个盘子问题
查看>>
n = 3 , while n , continue
查看>>
n 叉树后序遍历转换为链表问题的深入探讨
查看>>
N!
查看>>
N-Gram的基本原理
查看>>
n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
查看>>
Nacos Client常用配置
查看>>
nacos config
查看>>
Nacos Config--服务配置
查看>>
Nacos Derby 远程命令执行漏洞(QVD-2024-26473)
查看>>
Nacos 与 Eureka、Zookeeper 和 Consul 等其他注册中心的区别
查看>>
Nacos 单机集群搭建及常用生产环境配置 | Spring Cloud 3
查看>>
Nacos 启动报错[db-load-error]load jdbc.properties error
查看>>
Nacos 报Statement cancelled due to timeout or client request
查看>>